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Abstract

Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange

performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for

petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well

investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as

turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant

and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular,

which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting

tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-

dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/

outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes,

including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation

in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995)

635–657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation,

accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with

superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration

182 (5) (1995) 799–808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of

America 98 (3) (1995) 1723–1730], are additionally calculated for corresponding circular cross-sections for comparison and

discussion. The two-ports are thereafter combined with numerically obtained multi-ports, representing the connecting tanks,

in order to obtain the transmission properties for the charged air when passing the complete CAC. An attractive formalism

for representation of the multi-ports based on the admittance relationship between the ports is presented. From this the first

linear frequency domain model for CACs, which includes a complete treatment of losses in the cooling tubes and 3D effects

in the connecting tanks is extracted in the form of a two-port. The frequency dependent transmission loss is calculated and

compared to the corresponding experimental data with good agreement.
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1. Introduction

1.1. General

The recent trend of downsizing internal combustion (IC) engines, in order to reduce fuel consumption, while
using turbochargers to maintain the engine torque and power imposes additional noise phenomena not
created by naturally aspirated engines. Examples of such noise sources are the whining due to unbalance in the
turbo-axle and the different aerodynamic phenomena due to the high speed revolution of the turbine and
compressor wheels. For the in-duct noise the aerodynamic turbo sources are normally the most important [1]
producing high frequency noise [1,2] in the kHz range. In contrast the engine breathing represents low
frequency noise well below 1 kHz.

Many turbocharged engines are equipped with charge air coolers (CAC), a device used to increase the
overall performance of the engine. The cooling of the charged air results in higher density and thus volumetric
efficiency. It is also important for petrol engines that the knock margin increases with reduced temperature.
The parameters of main interest when designing a CAC are normally the pressure drop and the heat exchange
efficiency. However, what seem to have been overseen are the acoustic properties, which are still not very well
investigated. To the authors’ knowledge the sound attenuation properties are only dealt with in two previous
publications [3,4]. The models in both these references make use of two-ports (or four-poles) to assemble a
complete model for a CAC. However, neither of them includes a complete treatment of the losses in the
cooling tubes. According to the literature survey in Ref. [3], there are predictive models available describing
the thermal efficiency [5], and also models treating flow unsteadiness [6–8] in CACs. Still they are only
evaluated in terms of heat transfer performance, pressure drop and gas-exchange properties mainly affecting
lower frequencies. In Refs. [9,10], Knutsson and Åbom have presented some initial parts of the work presented
in this paper, which aims to make a complete model of the sound attenuating properties of CACs when there is
a mean flow present.

Most CACs consist of two of the most widely used sound attenuation measures: the reactive expansion
chamber, denoted in Fig. 1 by inlet/outlet tank, and the dissipative narrow cooling tubes. The assembled
component thereby offers possibly underestimated capabilities for broadband noise silencing that could be
used for noise optimization. As the CAC is installed downstream of the compressor (see Fig. 2), the noise that
is radiated from the compressor and travels upstream towards the intake orifice is of course not affected by the
CAC. However, the CAC will attenuate the compressor noise that is transmitted downstream towards the
engine and will thereby reduce the amount of break-out noise that radiates through the walls of the ducts
situated downstream of the CAC. It is also interesting that the low frequency engine breathing noise resulting
from the motion of the intake valves as well as the overhearing of exhaust noise through the EGR-system will
be reduced by the CAC. In order to take full advantage of this possibility, theoretical CAC models are
required to enable optimization.

In this paper a complete CAC linear frequency domain hybrid-model based on coupling multi-ports,
representing the inlet/outlet tanks, to resistive two-ports, representing the cooling tubes, is presented. The
model is validated for an air-to-air charge air cooler used in passenger cars (see Fig. 3). The cooling tubes in
this CAC are equipped with turbulators, as shown in Fig. 4, a folded metal sheet with large area, used to
improve the heat exchange efficiency of the cooling tubes. This installation creates narrow, almost triangularly
shaped (or isosceles trapezium), internal axial channels with dimensions equivalent to a hydraulic diameter
inlet 
duct

outlet 
duct

inlet 
tank

outlet 
tank

narrow cooling tubes 

Fig. 1. Schematic representation of a generic air-to-air charge air cooler.
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Fig. 2. Schematic representation of a turbocharged diesel engine with charge air cooler.

Fig. 3. Photograph of charge air cooler used for validation.
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Fig. 4. Internal geometry of one single cooling tube (geometry of turbulators indicated) in validation CAC.
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between 2.5 and 3mm. The propagation of sound in such tiny ducts was found by Kirchhoff [11] to be
dissipative due to viscous and thermal effects at the pipe walls. In this work he obtained the solution to the
problem, without any flow present, as a complicated, complex transcendental equation which has so far not
been solved analytically. In the work by Zwikker and Kosten [12] an approximate solution to the problem was
found from a set of simplified equations. When flow is present the situation is somewhat more complicated
and no complete theory exists. Several authors [13–22] have, however, derived solutions based on simplified
equations or numerical calculations. In the present paper the solution for circular ducts by Dokumaci [14], a
modified version of the numerical solution scheme for arbitrary cross-sections derived by Astley and
Cummings [16] and the solution accounting for turbulence in circular ducts by Howe [26] are used to model
the cooling tubes in order to determine which is the most accurate. Two-ports representing a cooling tube are
extracted from the three solutions, which has not to the authors’ knowledge previously been done for the latter
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two. The effect of approximating cross-sections that are shaped as isosceles trapeziums with circular
geometries, where the hydraulic diameter is equivalent, is studied for cases where laminar or turbulent flow is
present.

As the cross-dimensions of the connecting tanks are the largest in the charged air system they will define the
upper frequency limit for the two-port technique. In order to further extend the upper frequency limit of the
complete CAC model a multi-port technique has been used. The algebra for the multi-ports, based on the
admittance relationships between the ports, is derived and presented in an attractive form for easy
implementation. Three-dimensional acoustic finite elements have been used to establish the admittance
relations for each tank, which is represented by a matrix with the dimensions (N+1)� (N+1); where N is the
number of cooling tubes. The upper frequency limit for this hybrid approach will be defined by the cut-on for
the first non-planar mode in the inlet/outlet duct. The highest frequency validated in this particular study is
about 1.5 times larger than the cut-on frequency for the tanks while cut-on in the inlet/outlet ducts is outside
of the validation frequency band, limited by the experimental set-up. The correspondence between measured
and predicted transmission loss is very good in the entire validation band. The suggested technique thereby
offers a new possibility to tune the acoustic properties of CACs with respect to frequencies important for
breathing noise as well as noise from compressor operation and turbulent flow.

At high engine speed where the mass flow is large the broad band noise generated inside the intake system
components due to flow separation might be significant. The A-weighting of the sound pressure level will
further enhance the broad band part relative to the low frequency engine harmonic part. Since the turbulent
pressure drop of the present CAC is of the same order of magnitude as the rest of the system it will most likely
contribute to the total amount of generated flow noise. The model described in this paper only includes the
passive properties of the CAC and a future study of the active acoustic part could be of interest.
1.2. Two-port modelling

Assuming a one-dimensional (1D) acoustic state throughout the CAC, the sound propagation can be
described using acoustic two-ports [23]. This will be consistent as long as the highest frequency of interest stays
well below the cut-on frequency for the first non-planar wave. The frequency domain relationship between the
acoustic states at sections representing the inlet and outlet of a two-port can be written

p0in

q0in

" #
¼

T11 T12

T21 T22

" #
p0out

q0out

" #
, (1)

where p0 denotes the plane wave acoustic pressure and q0 the acoustic volume velocity. For simple generic
geometries, such as circular ducts, it is possible to obtain the complex valued components in the transfer
matrix from analytical expressions. For a component built up of several sub-components coupled in series,
such as a CAC or an after treatment device, the global two-port can be calculated as the product of the
individual two-port matrices. For the case of a CAC this can with reference to Fig. 1 be formulated as

TCAC ¼ TDUCTTINTCOOLTOUTTDUCT, (2)

where the index DUCT corresponds to the inlet/outlet ducts, IN to the inlet tank, COOL to the cooling tubes
and OUT to the outlet tank. The two-port matrix TCOOL for the complete bundle of cooling tubes is obtained
from parallel coupling of N tubes via the relation

TCOOL ¼
T11 T12=N

NT21 T22

" #
. (3)

Here, the matrix components T11, T12, T21 and T22 represent the data from one single channel. Eq. (2) will be
valid only as long as the waves are plane at the sections where the two-ports are coupled together. For the
particular case of CACs this will be limited to frequencies well below the cut-on frequency for the section
where the cooling tubes enter the inlet or outlet volume. For frequencies above this cut-on frequency, the so-
called multi-port technique can be used. The following two sections will describe how the two-ports for
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the cooling tubes can be calculated and how a multi-port technique can be implemented in order to extend the
valid frequency range for the complete CAC model.

2. Modelling plane waves in narrow tubes

2.1. General

The shortest dimension of the cross-section of a cooling tube in a CAC is of the order of 1–3mm; hence the
sound transmission will be strongly influenced by the viscothermal boundary layers and therefore highly
resistive. The typical length of a cooling tube is about 50 cm, and in the case studied here about 70 cm. The
ideal choice of model is therefore a two-port where the viscothermal effects are included. A number of such
models are available in the literature. One early model for sound propagation in circular tubes is the classical
Kirchhoff equation [11] from 1868 that includes the effect of viscosity as well as heat conduction. However, no
analytical solution has so far been presented to this complicated transcendental equation. Kirchhoff himself
was the first to present an approximate solution to his equation, using the restriction of ‘‘wide’’ ducts, which is
the same as large shear wavenumbers. More than 50 years later an approximate solution to a simplified
version of Kirchhoff’s equation was found by Zwikker and Kosten [12] for circular geometries. Their solution
is only dependent on the shear wavenumber and is also known as the ‘‘low reduced frequency solution’’ [13]
since it is only valid for cases where k0a51 and k0a/s51. Here k0 ¼ o/c0, a is the duct radius, c0 the speed of
sound in the fluid, s ¼ a(r0o/m)

1/2 is the shear wavenumber (also known as the Stokes number), r0 the mean
density, o the angular frequency and m is the dynamic viscosity.

In neither of these early works was the effect of mean flow considered. Inspired by the evolution of catalytic
converters, a number of authors have presented improved models accounting for an incompressible mean flow
and non-circular geometries [14–19]. For practical applications, the most useful is perhaps the work of
Dokumaci [14,15]. In Ref. [14] he showed that the equations for sound propagation in a thermo-viscous fluid,
simplified in the manner of Zwikker and Kosten theory [12], could be solved analytically for a circular pipe
with a mean flow profile that is constant over the cross-section. In a later paper [15], Dokumaci extended the
model in Ref. [14] to include rectangular cross-sections by expanding the solution in terms of a double Fourier
sine series. Other works starting out from essentially the same equations as used by Dokumaci [14,15] include
Astley and Cummings [16], Peat [17], Ih et al. [18], and Jeong and Ih [19]. At operating conditions, CACs as
well as catalytic converters experience temperature and pressure gradients. The effect of axial pressure and
temperature gradients has been treated by Peat [20], Peat and Kirby [21], and Dokumaci [22].

The present paper aims to establish an efficient acoustic modelling strategy for CACs where the cross-
section of the cooling tubes is irregular and an incompressible mean flow is present. The model that is most
suitable for this geometry is probably the model by Astley and Cummings [16], which is based on a finite
element discretization of the cross-section of the duct and allows arbitrary geometries. However, the Stokes
number for this particular case is larger than for the catalytic converter studied in Ref. [16], which is why a
much denser mesh is required which results in longer calculation times. It is of interest to investigate if an
analytical model can produce results equivalent to the numerical with a much smaller computational effort.
The model by Dokumaci [14] and a modified version of the model by Astley and Cummings [16] are coded and
used for this purpose. Since the shape of the propagating profile of the incompressible mean flow can be
arbitrary in the model in Ref. [16] a comparison is performed in order to estimate the effects of choosing a plug
flow profile instead of a laminar flow profile. The laminar flow profile, which is obtained from the solution to
Poisson’s equation, is parabolic for the simple case of a circular cross-section and more complicated for other
cross-sections. This is indeed interesting since the analytical model in Ref. [14] is based on a plug profile which
actually violates the assumption of a laminar flow.

All the models mentioned above assume laminar flow and therefore do not take into account any effect of
turbulence on the propagation of sound waves. The transition from laminar to turbulent flow is related to the
Reynolds number which for a circular pipe is defined as

Re ¼
UxDr0

m
, (4)
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where Ux is the velocity in the axial direction, D the duct diameter, r0 the density and m the dynamic
viscosity. If the cross-section is non-circular but the aspect ratio is not too large, the diameter can be replaced
by the hydraulic diameter Dh ¼ 4S/C where S is the cross-section area and C the wetted perimeter.
For a circular cross-section transition is known to take place at a Reynolds number just above 2000 [24],
but for triangular cross-sections the situation is somewhat more complicated. In the work by Eckert and
Irvine [25], it was shown experimentally that transition does not occur simultaneously over the whole
of the flow for a channel including a narrow region such as a triangle. For a triangle with an acute angle of 121,
more than 20% of the height is still laminar when the Reynolds number is 4000 (based on the hydraulic
diameter).

The mean flow velocity in a CAC, will be defined by the mass flow, temperature, static pressure and the
cross-section of the cooling tubes. The area remains of course constant for a particular CAC, but the other
three parameters are defined by the operating conditions of the engine and will therefore vary significantly,
as will the mean flow. However, in a passenger car the Mach number of the mean flow in the cooling tubes
will most likely stay below 0.1 for most driving conditions, except at very high engine revolution speed.
The flow regime between a Mach number of 0 and 0.1 will therefore be the most important from the noise
point of view. For the particular case of a CAC mounted on a passenger car, the Reynolds number will
not be possible to scale just with the mean flow velocity. An increased velocity is the result of the energy
added by the compressor wheel which also increases the pressure and the temperature. As the viscosity is
dependent on the temperature, and the density on both the temperature and the pressure, it will follow that the
Reynolds number will have to be calculated for each load case separately. Representative data taken
from both a diesel and a petrol engine at full load conditions will result in Reynolds numbers exceeding 2000.
Due to its wider engine speed range the petrol engine will experience Reynolds numbers as high as 8000.
At those conditions there will most likely be turbulent flow at least in the major part of the cross-section,
which is why a model that takes into account interaction between turbulence and sound waves is required. The
model by Howe in Ref. [26] combines the effects of turbulence and viscothermal sub-layers on wave
propagations in circular cross-sections. Although it requires the cross-section to be ‘‘wide’’ and the turbulent
flow to be fully developed with a constant flow profile, it will provide useful information and understanding
concerning the low frequency damping for the cases where the Reynolds number is large. In this paper the
model by Howe is applied to create a two-port matrix that includes interaction between turbulence and sound
waves. From this two-port transmission loss data is extracted and compared to the corresponding data from
the models by Dokumaci [14] and Astley and Cummings [16] for cold conditions as well as hot operating
conditions.
2.2. Analytical model including viscothermal effects

The fundamental linearized equations for a viscothermal fluid, as formulated by Zwikker and Kosten [12],
describing plane wave propagation in the x-direction, assuming an ideal gas and an incompressible uniform
mean flow, are for harmonic time variation [eiot], see Ref. [14], as follows:

Conservation of momentum is

r0 ioþU0
q
qx

� �
u0x ¼ �

qp0

qx
þ mr2

Su0x; p0 ¼ p0ðx; tÞ. (5)

Conservation of mass is

ioþU0
q
qx

� �
r0 þ r0r � u

0 ¼ 0. (6)

Conservation of energy is

r0Cp ioþU0
q
qx

� �
T 0 ¼ ioþU0

q
qx

� �
p0 þ kthr2

ST 0. (7)
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Using the ideal gas law the following equation of state is obtained as

p0

p0

¼
r0

r0
þ

T 0

T0
. (8)

Here p0, r0, U0 and T0 are the mean pressure, the mean density, the incompressible velocity in the axial
direction and the mean temperature, respectively, u0 is the acoustic velocity that comprises u0x, u0y and u0z for
each direction, p0, r0 and T0 are the acoustic pressure, density and temperature, respectively, Cp is the specific
heat at constant pressure, kth the thermal conductivity and r2

S is the Laplacian over the cross-section of the
cooling tube S. The boundary conditions that must be fulfilled at the duct walls are that no slip is allowed and
that temperature fluctuations are negligible. In addition rigid walls are assumed. These conditions imply that
u0 ¼ 0 and T0 ¼ 0 on the wall qS.

2.2.1. Cylindrical tubes

Following Dokumaci [14] a propagating wave ansatz is assumed

p0 ¼ p0p
n expðiot� iGk0xÞ; u0x ¼ p0hðrÞ=ðr0c0Þ; T 0 ¼ p0f ðrÞ=ðr0CpÞ, (9)

where p* is the dimensionless pressure, k0 is the wavenumber, c0 ¼ (gp0/r0)
1/2 is the isentropic speed of sound,

g is the ratio of specific heats, G is the dimensionless axial propagation constant and r is the radial coordinate. If
a circular cross-section is considered the r2

S- and r-operators can be transferred to cylindrical coordinates as

r2
S ¼

1

r

q
qr
þ

q2

qr2
(10)

and

r � u0 ¼
qu0x
qx
þ

qu0r
qr
þ

u0r
r
. (11)

Here u0r is the acoustic velocity in the radial direction. Substituting Eqs. (9)–(11) into Eq. (5) and (7), while
dropping p0 from both sides of the equation yields

r0ðio�U0iGk0Þ
h

r0c0
¼ iGk0 þ

m
r0c0

1

r

qh

qr
þ

q2h

qr2

� �
(12)

and

ðio�U0iGk0Þf ¼ ðio�U0iGk0Þ þ
kth
r0Cp

1

r

qf

qr
þ

q2f

qr2

� �
. (13)

Introducing b2 ¼ is2ð1� GMÞ=a2 where s is the Stokes number, a the radius of the duct, M the Mach number,
and the Prandtl number x2 ¼ mCp/kth, the Eqs. (12) and (13) simplifies to

q2h
qr2
þ

1

r

qh

qr
� b2h ¼ �

iGs2

a2
(14)

q2f
qr2
þ

1

r

qf

qr
� b2x2f ¼ �b2x2 (15)

which has the solutions

hðrÞ ¼ CHJ0ðibrÞ þ
G

1� GM
(16)

and

f ðrÞ ¼ CF J0ðibxrÞ þ 1, (17)

where CH and CF are constants and Jn is a Bessel function of the first type of order n. The boundary conditions
are zero radial acoustic velocity at r ¼ 0 and zero acoustic velocity and temperature at the duct wall

u0rð0Þ ¼ u0xðaÞ ¼ u0rðaÞ ¼ T 0ðaÞ ¼ 0 (18)
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which yields the solutions

hðrÞ ¼
G

ð1� GMÞ
1�

J0ðibrÞ

J0ðibaÞ

� �
(19)

and

f ðrÞ ¼ 1�
J0ðibxrÞ

J0ðibxaÞ
. (20)

Averaging / S the continuity equation (6) over the cross-section and insertion of Eq. (8) gives

ioþU0
q
qx

� �
r0p
0

p0

�
r0hT

0i

T0

� �
þ r0hr � u

0i ¼ 0. (21)

Via Gauss’ theorem and by using the boundary conditions in Eq. (18) the last term in Eq. (21) can be
rewritten; this yields

ioþU0
q
qx

� �
p0

p0

�
hT 0i

T0

� �
þ

qhu0xi
qx
¼ 0. (22)

Insertion of Eq. (9) and division by p0 yields

ðio�U0iGk0Þ
1

p0

�
hf i

r0CpT0

� �
�

ik0Ghhi
r0c0

¼ 0 (23)

which after some simplifications becomes

ð1� GMÞ 1� 1�
1

g

� �
hf i

� �
�

Ghhi
g
¼ 0. (24)

The average of Eq. (19) is

hhi ¼
G

ð1� GMÞ

1

pa2

Z a

0

1�
J0ðibrÞ

J0ðibaÞ

� �
2prdr ¼

G
ð1� GMÞ

1�
2J1ðibaÞ

ibaJ0ðibaÞ

� �
. (25)

The same operation on Eq. (20) yields

hf i ¼ 1�
2J1ðibxaÞ

ibxaJ0ðibxaÞ

� �
. (26)

Insertion of Eq. (5) and (26) in Eq. (24) yields after some rearrangement

ð1� GMÞ2 1� 1�
1

g

� �
GðibxaÞ

� �
�

G2

g
GðibaÞ ¼ 0, (27)

where

GðxÞ ¼ 1�
2J1ðxÞ

xJ0ðxÞ
. (28)

Eq. (27) can be solved by simple iteration to obtain two roots G1 and G2, representing wave propa-
gation in the positive and negative axial direction, respectively. For the special case of M ¼ 0 Eq. (27)
simplifies to

1� 1�
1

g

� �
Gðxs

ffiffiffiffiffiffi
�i
p
Þ

� �
�

G2

g
Gðs

ffiffiffiffiffiffi
�i
p
Þ ¼ 0 (29)

with the solution

G2 ¼
1þ ðg� 1Þ2J1ðsx

ffiffiffiffiffiffi
�i
p
Þ=ðsx

ffiffiffiffiffiffi
�i
p

J0ðsx
ffiffiffiffiffiffi
�i
p
ÞÞ

1� 2J1ðs
ffiffiffiffiffiffi
�i
p
Þ=ðs

ffiffiffiffiffiffi
�i
p

J0ðs
ffiffiffiffiffiffi
�i
p
ÞÞ

. (30)
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2.2.2. Two-port for circular ducts

In order to establish the two-port matrix the wave admittance /hS/(r0c0) is used. Eq. (25) yields after some
simplifications

hhi

r0c0
¼

GGðibaÞ

r0c0ð1� GMÞ
. (31)

Finally the two-port of one single channel with the length Lp can be calculated as

Tp ¼

1 1
Shh1i

r0c0

Shh2i

r0c0

2
4

3
5 expð�ik0G1LpÞ expð�ik0G2LpÞ

Shh1i

r0c0
expð�ik0G1LpÞ

Shh2i

r0c0
expð�ik0G2LpÞ

2
64

3
75
�1

, (32)

where the indices 1 and 2 denote the two separate roots of Eq. (27). For the case of parallel channels, as in a
cooling tube, the two-port Tp can be calculated using Eq. (32) after multiplication of the capillary area S by the
number of channels. Additionally for the case of non-circular geometries, where the aspect ratio of the sides of
the tube is not too large, the wave damping of a circular section with the same hydraulic diameter should be a
good approximation [27].

2.3. Numerical model including viscothermal effects

For the case of large aspect ratios, the finite element solution scheme formulated by Astley and
Cummings [16] can be used in order to further increase the accuracy of the prediction. This formulation
will also allow an arbitrary profile of the incompressible mean flow. For the convenience of the
reader the derivation of the numerical formulation is partly presented in the section below. The
linearized governing equations are the same as was used in Refs. [14,15], here given in Eqs. (5)–(8),
with two exceptions. First, in order to eliminate the velocity components perpendicular to the axial
direction of the duct, an integral form of the continuity equation (6) is used in combination with the boundary
conditions u0 ¼ 0 and T0 ¼ 0 on the wall qS. The continuity equation is, without approximation,
reformulated to Z

S

ioþU0
q
qx

� �
r0 þ r0

qu0x
qx

� �
dS ¼ 0. (33)

Secondly, in the derivation by Astley and Cummings [16] the fluctuating part of the dissipation function
in the energy equation is retained. However, in the following work this term is excluded in order to simplify
the mean flow calculations. The fluctuating dissipation function given in Ref. [16] contains gradients
of the mean flow which introduces approximations in the chosen prediction approach. In Section 5.2.1
this omission is justified for this particular case approximated as a circular tube where an analytical solution
of the laminar mean flow exists. It should be pointed out that in the derivation of Astley and Cummings
the acoustic velocities u0y and u0z in the momentum equation are omitted with reference to the work by
Peat [17].

2.3.1. Numerical formulation

Following Astley and Cummings [16] a harmonic plane wave type of solution to these equations, where the
acoustic variables have been non-dimensionalized using the mean flow quantities and the isentropic speed of
sound, can be obtained from the ansatz:

u0x ¼ c0unðyn; znÞ expðiot� ik0GxÞ, (34)

p0 ¼ p0pn expðiot� ik0GxÞ, (35)

T 0 ¼ T0Tnðyn; znÞ expðiot� ik0GxÞ. (36)

Here y* and z* are the in-plane non-dimensional coordinates, scaled using half the hydraulic diameter of the
cross-section. The cross-sectional area in the non-dimensional y*–z* plane is denoted by S* and its boundary
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by qS*. Substitution of Eqs. (34)–(36) into the equation of state (8) and the integrated continuity equation (33)
gives ZZ

Sn

½ið1� GMÞðpn � TnÞ � iGun�dSn ¼ 0, (37)

where M(y,* z*) is the Mach number of the incompressible mean flow. The same procedure on the equation
for conservation of momentum (5) yields

g
s2
r2

Snun � igð1� GMÞun þ iGpn ¼ 0, (38)

where

r2
Sn ¼

q2

qyn2
þ

q2

qzn2
(39)

and s is the Stokes’ number. The energy equation (7) becomes accordingly

g
g� 1

1

s2x2
r2

SnTn �
g

g� 1
ið1� GMÞTn þ ið1� GMÞpn ¼ 0, (40)

where x2 is the Prandtl number of the fluid.
The finite element process is based on finding an approximate solution (trial solution) of the velocity and

temperature fields in the form:

un ¼
Xn

i¼1

uifiðy; zÞ; Tn ¼
Xn

i¼1

Tifiðy; zÞ (41)

where fi are the known shape functions, which must be able to satisfy the boundary conditions individually,
and ui and Ti are unknown coefficients. The boundary conditions are zero acoustic velocity and temperature at
the duct wall

un ¼ Tn ¼ 0 on qSn. (42)

The plane wave ansatz for the pressure in Eq. (35) gives

pn ¼ p1 ¼ constant: (43)

Substitution of Eqs. (41) and (43) into the integral equation (37) yields

iSnð1� GM̄Þpn � iðuT � GuT
mÞT

n � iGuTun ¼ 0, (44)

where

u ¼
ZZ

Sn

f1

�

�

fn

2
66664

3
77775dSn; um ¼

ZZ
Sn

Mf1

�

�

Mfn

2
66664

3
77775dSn, (45)

un ¼

u1

�

�

un

2
6664

3
7775; Tn ¼

T1

�

�

Tn

2
6664

3
7775; pn ¼ ½p1�. (46)

The Mach number of the incompressible flow averaged over the cross-section is

M̄ ¼
1

Sn

ZZ
Sn

Mðyn; znÞdSn: (47)
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The method of weighted residuals (known alternatively as the Galerkin procedure) applied to the momentum
equation (38), while applying the divergence theorem, yields after some rearrangementsZZ

Sn

�
g
s2
rSnfj � rSnun � igð1� GMÞfju

n þ iGfjp
n

h i
dSn ¼ 0; j ¼ 1; 2; . . . ; n. (48)

After substitution of the trial functions for p* and u* Eq. (48) becomes

�
g
s2
Bun � ig½A� GAm�u

n þ iGupn ¼ 0. (49)

Here A, B and Am are n� n matrices, where n is the number of nodes and the j– kth components are given by

½A�jk ¼

ZZ
Sn

fjfk dSn; ½B�jk ¼

ZZ
Sn

rSnfj � rSnfk dSn, (50)

½Am�jk ¼

ZZ
Sn

Mfjfk dSn. (51)

The same procedure can be used for the energy equation (40)

�
g

g� 1

1

s2x2
BTn � i

g
g� 1

½A� GAm�T
n þ i½u� Gum�p

n ¼ 0. (52)

Eqs. (44), (49) and (52) have to be solved together, which is most easily visualized as the matrix equation

iSn 0 �iuT

0 gB=s2 þ igA 0

�iu 0
g

g� 1

B

s2x2
þ iA

� �
2
6664

3
7775� G

iSnM̄ iuT �iðumÞ
T

iu igAm 0

�ium 0
g

g� 1
iAm

2
6664

3
7775

2
6664

3
7775

pn

un

Tn

2
64

3
75 ¼ 0

0

0

2
64
3
75. (53)

Here 0 indicates a zero matrix of appropriate size. For the case of zero mean flow, M̄ ¼ 0, all sub-matrices
with index m are zero. The eigenvalue problem in Eq. (53) will only contain two non-trivial roots having the
same values but opposite sign. As can be observed from the ansatz (35) they represent wave propagation in
positive and negative axial direction with equal speed and attenuation. For the case of a present mean flow a
full set of non-trivial eigenvalues will exist. As discussed in Ref. [16] two of those will behave almost like the
solutions in the no-flow case. Only those two modes will be retained in the present work.

Axi-symmetric modelling of a circular cross-section is simplified with a 1D approach where the same
equations are formulated using cylindrical coordinates. The variables u* and T* in Eqs. (34) and (36) are only
dependent on the non-dimensional radial coordinate r* and the operator r2

Sn is transferred to fq2=qrn2þ

ð1=rÞq=qrng.

2.3.2. Two-port calculation

The eigenvectors corresponding to the above-mentioned two eigenvalues describe the shape of the profile of
the propagating acoustic variables in the axial direction and can be rewritten as

Kj ¼

Lpj

Kuj

KTj

2
64

3
75, (54)

where Lpj, Kuj and KTj denotes the eigenvector for the pressure, velocity and temperature respectively, taken
for eigenvector j. Since the pressure is assumed to be constant over the cross-section Lp is a single value while
Ku and KT are vectors of size n� 1. In order to establish a two-port for the duct the dimensional axial acoustic
velocity u0x has to be averaged over the cross-section. For this purpose, the shape functions in Eq. (45) can
conveniently be used:

hu0xi ¼
c0uTKu

Sn
. (55)
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The averaged admittance is thereafter calculated using Eq. (55) and the pressure from Eq. (35) as

hhi

r0c0
¼

c0uTKu

p0LpSn
. (56)

Using the definition for speed of sound, Eq. (56) simplifies to

hhi

r0c0
¼

guTKu

r0c0LpSn
. (57)

Finally, /hS and G for the two acoustic modes is substituted into Eq. (32), upon maintaining their signs, to
establish the desired two-port for the tube-element.

2.3.3. Numerical formulation of the mean flow

The establishment of the matrices Am and um requires the mean flow to be known at all positions in the
cross-section. The laminar flow profile for the non-dimensionalized cross-section can be obtained from the
solution to Poisson’s equation [16] as

q2M
qyn2
þ

q2M
qzn2
¼

a2G

mc0
, (58)

where G is the (dimensional) pressure gradient of the incompressible steady flow in the axial direction and a

half the hydraulic diameter of the cross-section. The solution scheme of this equation is obtained using the
same procedure as was used for the conservation of momentum and energy. The Galerkin process, the
divergence theorem and the boundary condition (M ¼ 0) on the tube wall qS* yields after some
rearrangements: ZZ

Sn

rSnfj � rSnM þ
a2G

mc0
fj

� �
dSn ¼ 0; j ¼ 1; 2; . . . ; n, (59)

The trial functions for the Mach number are on the same form as those that were used for the velocity and
temperature

M ¼
Xn

i¼1

Mifiðy
n; znÞ. (60)

Substitution of Eq. (60) into Eq. (59) yields

BMþ
a2G

mc0
u ¼ 0, (61)

where

M ¼

M1

�

�

Mn

2
6664

3
7775 (62)

and B is defined in Eq. (50) and u in Eq. (45). The mean flow M̄ can finally be calculated from Eq. (47) using
the shape functions in the same way as in Eq. (55).

2.3.4. Calculation of the shape functions

The derivation of the shape functions is straightforward and well documented in several text books (see for
instance the book by Zienkiewicz and Taylor [33]). The finite element discretization in this work is performed
using nine-noded isoparameteric Lagrangian rectangular elements. Nine-point Gauss–Legendre integration is
used to evaluate the element integrals A, B, u, Am and um at the Gauss points. The information about the
Mach number of the incompressible mean flow is used when evaluating Am and um at the integration points. If
the same element discretization is used for the mean flow problem as for the acoustic problem, the data is
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calculated only at the node points and 2D interpolation must be used in order to predict the Mach number at
the Gauss points.

2.4. Analytical model including effects of turbulence

When a turbulent flow is present the acoustic waves will be attenuated due to transfer of energy to turbulent
stresses if the thickness of the acoustic boundary layer, dac ¼ (2n/o)1/2, is larger than that of the viscous sub-
layer of the turbulent mean flow boundary layer, dvE10n/(tw/r0)

1/2, [28,29]. Here, n denotes the kinematic
viscosity, r0 the density of the fluid and tw the mean wall shear stress. Introducing the friction velocity as
u� ¼ (tw/r0)

1/2, the viscous sub-layer is dvE10n/u�. An early effort addressing damping of sound waves in the
presence of flow was made by Ingard and Singhal [30]. More recent work include Peters et al. [29] and Howe
[26] where the latest is the most complete model developed so far [31].

Howe [26] proposed a frequency dependent model for the turbulent boundary layer eddy viscosity
controlling the momentum and thermal boundary layers, which are formed from interaction between
turbulent boundary layers and sound waves. The model is restricted to cases with fully developed
and low Mach number (Mo0.1) turbulent flow and only treats one-dimensional axial wave propagation.
It is strictly valid for situations where the thickness of the turbulent boundary layer is much smaller
than the acoustic wavelength so that the layers can be described by an effective acoustic admittance.
The model has so far proven to provide good agreement with experimental data from Peters et al. [29]
for Reynolds numbers exceeding 104, which is well above the transition which normally takes place
just above a Reynolds number of 2000, based on the hydraulic diameter [24,25]. These circumstances
justify the simplification that the profile of the mean flow is regarded as uniform in the core of the
flow.

2.4.1. Circular tubes

The acoustic wave is once again given by the ansatz

p0 ¼ p0pn expðiot� iGk0xÞ. (63)

The propagation constant, corrected for turbulent flow, is given by Howe [26] as

G ¼ �
1

1�M
�

2ir0c0
ð1�MÞDhk0

Y C

�k0

1�M
;o

� �
. (64)

Here, YC is the complex conjugate of the boundary layer admittance Y which is calculated as

Y ðk;oÞ ¼
e�ip=4

r0o3=2
k2 ffiffiffi

n
p

F A

ffiffiffiffiffiffiffiffiffiffi
ion
k2u2

n

s
; dv

ffiffiffiffiffi
io
n

r !
þ

bo2

cp

ffiffiffi
w
p

FA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
iowP2

t

k2u2
n

s
; dv

ffiffiffiffiffi
io
w

s !" #
, (65)

where kE0.41 is the von Karman constant, Pt is a turbulence Prandtl number, assumed to be constant and
equal to 0.7 for air [26], w ¼ kth/(r0Cp) is the thermometric conductivity, which for air at 20 1C is about
2� 105m2 s�1. Moreover, the function FA is defined as

FAða; bÞ ¼
i H

ð1Þ
1 ðaÞ cosðbÞ �H

ð1Þ
0 ðaÞ sinðbÞ

h i
H
ð1Þ
0 ðaÞ cosðbÞ �H

ð1Þ
1 ðaÞ sinðbÞ

, (66)

where H ð1Þn is a Hankel function of order n. The friction velocity is calculated from the empirical pipe flow
formula

U0=un ¼ 2:44 lnðunDh=2nÞ þ 2:0. (67)

Finally, the thickness of the viscous sub-layer is calculated using the empirical formula [26]

dvun

n
¼ 6:5 1þ

1:7 o=on

� �3
1þ o=on

� �3
 !

; onn=u2
n
� 0:01; o40. (68)



ARTICLE IN PRESS
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Here, o� is the critical frequency representing the centre of the range where the principal acoustic–
turbulence interaction occurs in a close-to-the-wall region where viscous as well as turbulence diffusion is
significant.

2.4.2. Two-port for circular tubes

In order to extend Howe’s model to enable extraction of a two-port for a circular duct the wave admittance
/hS/(r0c0) is required. This can be calculated using the axial momentum conservation equation where the
velocity has been averaged over the cross-section,

Dhu0xi

Dt
þ

1

r0

qp0

qx
¼ 0, (69)

where D/Dt	q/qt+U0q/qx. Assuming harmonic waves yields the wave admittance as

hu0xi

p0
¼
hhi

r0c0
¼

G
r0c0ð1� GMÞ

. (70)

The two-port for the duct can thereafter be obtained from substituting the expressions for /hS and G into
Eq. (32). As for the two previously described models, there exist two solutions for propagation in opposite
directions, in Eq. (32) denoted by the indices 1 and 2. Both are required for the two-port extraction and the
appropriate sign will follow from the two solutions for G, obtained from Eq. (64).

3. Modelling a complete charge air cooler

3.1. General

The charge air cooler used in this study is taken from a passenger car in series production and is used for
diesel as well as petrol engines. It is assembled from several parts made of different materials. The cooler is of
brick type with relatively compact dimensions, which makes it suitable for densely packed engine
compartments. There are ten cooling tubes made of aluminium, each of them divided into 36 channels due
to the turbulator installation, as shown in Fig. 4. The air is prevented from flowing between the channels and
there is no flow reversal taking place inside the cooler. The cooling tubes are modelled using the two-ports that
were extracted using the techniques described in Section 2.

3.2. In- and outlet sections

The inlet tank consists of a 901 bend and a diverging conical section connecting the inlet duct to the
cooling tubes. The walls are made of plastic and are reinforced by some ribs in order to reduce vibrations
as well as sound transmission. The total cross-sectional area of the ten cooling tubes is about 50% larger
than that of the inlet duct. This is a good way to compensate for the larger pressure drop present in the
narrow cooling tubes. In order to create a good flow for the cold air outside the cooling tubes, and
thereby an efficient heat transfer from the charged air inside the CAC to the cooling air, there is a slit
separating each tube from its neighbour. This geometrical separation of the tubes makes the area at the largest
section of the inlet tank more than twice that of the cooling tubes. The geometry of the outlet tank is almost
symmetric to that of the inlet, of course with the restriction that the mean flow here is contracted. The
acoustics of such conical devices (horns) has been treated by several authors where the most recent
publications have addressed the effect of flow. Approximate plane wave models based on series of straight
ducts have been discussed by Åbom [32], for example, who showed that only a few segments are required to
create very good results.

3.2.1. 3D finite element models

In order to extend the valid frequency range and include cross-modes, for such complicated geometries
as the tanks, acoustic finite elements can be used. Most commercial finite element software packages
include 3D linear acoustic finite elements (FE) and there are a large number of textbooks describing the
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theory (see e.g. Ref. [33]); therefore it will not be further described here. In the 3D FE-calculations
in the present work LMS/Sysnoise [34] has been used. In this code the convective effect of a super-
imposed incompressible mean flow can easily be accounted for, although it has been neglected here
due to the small Mach number that remains from the large expansion. Some codes also allow the
use of admittance matrices to connect two different volumes using the acoustic velocity and pressure
as coupling variables [34]. This procedure requires the complete model to be solved for each frequency
for each load case, which is time consuming as well as expensive for models with fine element
resolution. A good method to shorten iteration time, if the properties of the air mixture and the
geometry of the tanks are fixed, is to use the multi-port approach that will be described in the next
section.

The tanks of the charge air cooler used in this study are very similar in size and shape. The volume
of the inlet tank is 853 cm3 and that of the outlet tank is 896 cm3. There is a circular opening in the wall
of the outlet tank designed to support a temperature transducer. In all measurements and calculation
results presented here this hole is carefully plugged to create a smooth wall. In order to achieve a
fast and simple meshing procedure, linear tetrahedral elements with four nodes are used to model the
volumes and linear wedge element with six nodes for the pipes. The use of hexahedral elements with
eight nodes would certainly be more efficient but the process of creating the element mesh is still not
possible to fully automate and hence very cumbersome. Parabolic tetrahedral elements would of course
also be an efficient choice but for this case it was decided to use the linear element with very high
resolution. The chosen element size is 5mm which yields more than 40 elements per wavelength for
analyses performed at a frequency of 1600Hz at cold conditions and more than 50 for the warmer air
present at full load and medium engine speed. The total number of nodes is about 23 000 in each tank,
built up using 76 000 elements in the inlet tank and 83 000 in the outlet tank. This finite element mesh is shown
in Fig. 5.

The circular pipes connecting the tanks to the rest of the gas exchange ducting of the engine have diameters
equal to 60mm. Short parts of the measurement ducts, with a diameter 66mm, are also included in the model
in order to make sure that the waves are plane after the 901 bend in each tank. The same technique is also used
at the connection to the cooling tubes where acoustical near fields are present due to the sudden contraction
and expansion.

When using acoustical finite elements it is well known that the numerical integration of the pressure
at a boundary is performed exactly. However, the acoustic velocity boundary condition is obtained only
in a weak sense since it is of Neumann type. The prediction of the acoustic velocity at a boundary is obtained
from extrapolation of the results at the integration points inside the elements to the boundary. To account for
the inaccuracy resulting from the extrapolation, the elements at all openings are made extremely short
(0.1mm).

To simulate the effect of yielding walls and propagation losses in the inlet and outlet sections, made
of plastic, damping is applied as a complex speed of sound. Based on the investigation by Knutsson et al. in
Ref. [35], an engineering estimate for the damping in intake system components made of plastic is obtained by
setting the imaginary part of the speed of sound equal to 1% of the real part.
Fig. 5. Finite element mesh of inlet and outlet tanks (the tanks have been moved together in the image).
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Fig. 6. Definition of acoustic variables at multi-port openings.
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3.2.2. Multi-port mobility matrices

The acoustics of the tank volumes of the CAC can be represented by the admittance matrix relations ATn,
which relates the acoustic volume velocities q0 to the pressures p0 at all openings as

q0in

q01

" #
¼ ½AT1�

p0in

p01

" #
;

q0out

q02

" #
¼ ½AT2�

p0out

p02

" #
, (71)

where the indices in and out represent the in- and outlet of the two-port for the complete CAC, T1
and T2 are the inlet and outlet tank respectively. The vectors q01 and p01 are of size N� 1 and represent
the acoustic volume velocities and pressures, respectively at the inlets to the cooling tubes. Here N

is the number of cooling tubes. The vectors q02 and p02 represent the corresponding variables at the outlets
from the cooling tubes into the outlet tank. The direction of all volume velocities are with reference to
Fig. 6.

The admittance coupling between the inlet and outlet of one cooling tube can be expressed as

q01

q02

" #
¼

Mp;11 Mp;12

Mp;21 Mp;22

" #
p01

p02

" #
, (72)

where the indices 1 and 2 represent the inlet and outlet of the cooling tube. The admittance matrix can be
expanded in order to include the complete bundle of cooling tubes as

q01

q02

" #
¼

Mp;11 0 : : 0 Mp;12 0 : : 0

0 Mp;11 : : : 0 Mp;12 : : :

: : : : : : : : : :

: : : : 0 : : : : 0

0 : : 0 Mp;11 0 : : 0 Mp;12

Mp;21 0 : : 0 Mp;22 0 : : 0

0 Mp;21 : : : 0 Mp;22 : : :

: : : : : : : : : :

: : : : 0 : : : : 0

0 : : 0 Mp;21 0 : : 0 Mp;22

2
66666666666666666664

3
77777777777777777775

p01

p02

" #
. (73)

The admittance matrix above can also be written in a more compact form as:

Mtot
p ¼

EMp;11 EMp;12

EMp;21 EMp;22

" #
¼

Mp;11 Mp;12

Mp;21 Mp;22

" #
, (74)



ARTICLE IN PRESS
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where E is a unity matrix of size N�N. The matrices AT1 and AT2 can be divided into sub-matrices as

½A� ¼
A11 ar

ac A0

� �
, (75)

where A0 is a matrix of order N�N where the first row and column in the matrix A has been excluded, ar and
ac are vectors of length N representing, respectively the previously excluded first row and column in A except
the first position which here is denoted A11. Hereafter Eq. (73) can be assembled into Eq. (71) which results in
the following systems of equations

q0in ¼ AT1;11p0in þ ar
T1p
0
1

Mp;11p
0
1 þMp;12p

0
2 ¼ ac

T1p0in þ A0T1p
0
1

(
(76)

and

q0out ¼ AT2;11p0out þ ar
T2p
0
2

Mp;21p
0
1 þMp;22p

0
2 ¼ ac

T2p
0
out þ A0T2p

0
2

(
. (77)

The last equations in system (76) and (77) yields p01 and p02 as

p01 ¼ �½Mp;11 � A0T1�
�1Mp;12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B1

p02 þ ½Mp;11 � A0T1�
�1ac

T1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bc
1

p0in (78)

and

p02 ¼ � Mp;22 � A0T2

 ��1

Mp;21|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B2

p01 þ Mp;22 � A0T2

 ��1

ac
T2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bc
2

p0out (79)

respectively. Substitution of Eq. (78) into (79) yields, after some rearrangements

p02 ¼ ðE� B2B1Þ
�1B2b

c
1p
0
in þ ðE� B2B1Þ

�1bc
2p
0
out. (80)

This expression is used in Eq. (78) to obtain p01 as

p01 ¼ ðB1ðE� B2B1Þ
�1B2 þ EÞbc

1p
0
in þ B1ðE� B2B1Þ

�1bc
2p
0
out. (81)

Finally, Eqs. (80) and (81) are substituted into the first expressions in Eqs. (76) and (77) to obtain the
admittance matrix for the complete CAC unit, ACAC. After some simplifications this relation can be expressed
as

q0in

q0out

" #
¼

AT1;11 þ ar
T1ðB1BB2 þ EÞbc

1 ar
T1B1Bb

c
2

ar
T1BB2b

c
1 AT1;11 þ ar

outBb
c
2

" #
p0in

p0out

" #
, (82)

where B ¼ (E�B2B1)
�1. The admittance matrix, that is now of the order 2� 2 since there are only two ports

on the component, can easily be transformed to the transfer-matrix format as

TCAC ¼
1

ACAC;21

�ACAC;22 1

ACAC;12ACAC;21 � ACAC;11ACAC;22 ACAC;11

" #
. (83)

To establish the admittance matrices for the tanks in Eq. (71) N+1 load cases are required. These are
composed by using identical FE models but with different boundary conditions. The relation between the
admittance matrix and the calculated acoustic volume velocities and pressures at the 11 ports for the inlet tank
is

q0in�LC1 q0in�LC2 � � � q0in�LC11

q01�LC1 q01�LC2 � � � q01�LC11

" #
¼ ½AT1�

p0in�LC1 p0in�LC2 � � � p0in�LC11

p01�LC1 p0in�LC2 � � � p01�LC11

" #
, (84)

where q0in�LCn and p0in�LCn represent the resulting acoustic volume velocity and pressure for load case n and the
vectors q01�LCn and p01�LCn, of size N� 1, contain the corresponding values at the cooling tube inlets.
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The admittance matrix is obtained from the product of the matrix containing the volume velocities and the
inverted pressure matrix. The corresponding matrix for the outlet tank is obtained accordingly, directions of
the acoustic volume velocities with reference to Fig. 6.

3.2.3. Compensation for near field effects at multi-port openings

The 3D FE models of the tanks include a short part of the cooling tubes in order to establish a plane wave at
the boundary of the multi-port. The FE formulation does not take into account any effects of boundary layers
or turbulence in those narrow parts and as a result these will be missing in the final two-port. An approximate
method to reintroduce the missing damping is to assume plane waves in the tubular parts of the tank-model,
virtually transfer the position of the multi-port openings back to the section where the tubes enter the tank,
and use the full length in the two-ports for the tubes. The formalism for this will be described below.

The relation between the acoustic variables at position 1 and 1A, where 1A is the new position for the tube
ports, can be described using Eq. (1) as

p01

q01

" #
n

¼
T11 T12

T21 T22

" #
p01A

q01A

" #
n

, (85)

where n ¼ 1, 2, y, N. For a straight duct the transfer matrix is

T11 T12

T21 T22

" #
¼ e�ikML=ð1�M2Þ

cosðkLA=ð1�M2ÞÞ iZ sinðkLA=ð1�M2ÞÞ

ði=ZÞ sinðkLA=ð1�M2ÞÞ cosðkLA=ð1�M2ÞÞ

" #
, (86)

where k is the wavenumber, M the Mach number and Z the wave impedance; all three taken for one single
tube in the FE model. LA is the translation distance which will be negative for the inlet tank and positive for
the outlet. Eq. (85) can be rewritten, in order to represent all the ten cooling tubes, as

p01

q01

" #
¼

T11E T12E

T21E T22E

" #
p01A

q01A

" #
, (87)

where E once again is a unity matrix of size N�N. Substitution of Eq. (87) into Eq. (71) yields

q0in ¼ A11p0in þ arðT11p
0
1A þ T12q

0
1AÞ

ðT21p
0
1A þ T22q

0
1AÞ ¼ acp

0
in þ A0ðT11p

0
1A þ T12q

0
1AÞ;

(
(88)

where Tij ¼ TijE. These expressions can thereafter be used to establish an admittance relation between q0in, q
0
1A,

p0in, and p01A on the same form as Eq. (71). The expression for q01A is

q01A ¼ ½T22 � A0T12�
�1½A0T11 � T21�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F1

p01A þ ½T22 � A0T12�
�1ac|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fc
1

p0in (89)

which thereafter is used to obtain q0in. After some simplifications this expression becomes

q0in ¼ ½A11 þ arT12f
c
1�p
0
in þ ½arT11 þ arT12F1�p

0
1A. (90)

Finally the admittance matrix for a multi-port where the ports have been translated becomes

q0in

q01A

" #
¼

A11 þ arT12f
c
1 arðT11 þ T12F1Þ

fc
1 F1

 !
p0in

p01A

" #
(91)

which will be used to represent the inlet tank instead of Eq. (71). The procedure to obtain the admittance
matrix for the outlet tank is identical.

3.3. Acoustic coupling at cross-section discontinuities

At the outlet from each cooling tube there is an abrupt expansion (see Fig. 7a), which needs a separate two-
port for the cases when there is a mean flow present. Flow separation will be present; hence, entropy is
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Fig. 7. Mean flow velocity profiles at (a) area expansion and (b) area contraction.
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generated due to the dissipation in the turbulent mixing region downstream the flow separation. This
interaction between the acoustic field and the flow separation is, however, very complex and complete
analytical models are complicated. An example of such a model is the work by Boij and Nilsson [36]. Several
authors have suggested models based on simplified velocity fields. The model used here is based on the simple
analysis in Ref. [37] which has been found to give good results for low Mach numbers and rather low
frequencies [38–40]. An area contraction is formed at the inlet of the cooling tubes. Depending on the flow
situation, a vena contracta can be formed just after the area contraction. This implies some dissipation that
can be treated using a similar approach as for the expansion [40] but here the isentropic contraction must
be added.

3.3.1. Area expansion

The model for the area expansion is derived assuming incompressible mean flow and quasi-steady
conditions. As the situation is not isentropic the conservation of momentum over the expansion is used as

P1S2 þ r0U
2
1S1 ¼ P2S2 þ r0U

2
2S2, (92)

where Pn is the static pressure, Un the mean axial flow velocity and the indices 1 and 2 are referring to Fig. 7a.
Conservation of mass yields

S1U1 ¼ S2U2. (93)

Assuming constant density, r1 ¼ r2 ¼ r0, and superimposed mean flow the pressure and velocity field can be
divided as

P1 ¼ p01 þ p01; U1 ¼ U01 þ u01 (94)

and

P2 ¼ p02 þ p02; U2 ¼ U02 þ u02. (95)

Together with the open area relation mEXP ¼ S1/S2, Eq. (92) simplifies to

p01 ¼ p02 þ 2r0U02u02 � 2r0mEXPU01u01. (96)

where second-order components have been neglected and the steady components subtracted. The transfer-
matrix relation can thereafter be calculated as

p01

q01

" #
¼

1 2Z2M02 1�
1

mEXP

� �
0 1

2
4

3
5 p02

q02

" #
, (97)

where the wave impedance is Z2 ¼ r0c0/S2 and the Mach number is M02 ¼ U02/c0.

3.3.2. Area contraction

For the case of an area contraction, as shown in Fig. 7b, the flow is homogenous and without losses at the
large section (1) and up to the possible vena contracta (c). The vena contracta might exist for situations where
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the Reynolds number in the cooling tube is low. The extra losses introduced by the small expansion will be
included in the derivation below but will for most cases be very small. Here the conservation of energy is
described using Bernoulli’s equation for the mean flow between Section 1 and the vena contracta as

P1 þ
1

2
r0U

2
1 ¼ Pc þ

1

2
r0U

2
c . (98)

Between section (c) and (2) a non-reversible expansion takes place which can be described using the
conservation of momentum in Eq. (92). Here the indices have to be changed, which yields

PcS2 þ r0U
2
cSc ¼ P2S2 þ r0U

2
2S2. (99)

Using Eq. (99) in Eq. (98) together with conservation of mass as stated in Eq. (93) yields

p01 ¼ p02 þ Z1M01q02
1

m2
21

1

m2
c2

�
2

mc2
þ 2

� �
� 1

� �
, (100)

where the area ratios are defined as m21 ¼ S2/S1 and mc2 ¼ Sc/S2. For the case without losses Eq. (100)
simplifies to

p01 ¼ p02 þ Z1M01q02
1

m2
21

� 1

� �
, (101)

Finally the transfer-matrix relation can be calculated as

p01

q01

" #
¼

1 Z1M01
1

m2
21

1

m2
c2

�
2

mc2
þ 2

� �
� 1

� �
0 1

2
4

3
5 p02

q02

" #
. (102)

The ratio that includes the vena contracta area depends on the shape of the inflow and is approximately
between 0.5 and 1 [41] with an expected value between 0.61 and 0.65. More accurate estimates can be obtained
either by approximate calculations or from experiments.

4. Measurements

In order to validate the proposed model, measurements have been performed using the flow acoustic test
facility available at MWL/KTH. All experiments were done at room temperature for different flow speeds.
The Mach number in the main ducts was varied between 0 and 0.1 in steps of 0.025, values chosen as being
representative for engine operating conditions. This implies that in the cooling tubes, where the area is
expanded by a factor 1.2–1.3 compared to the measurement duct, the Mach number will be as most 0.08. The
test ducts used during the experiments consisted of standard steel pipes, with diameters equal to 66mm,
chosen in order to relate to the in- and outlet of the charge air coolers. Eight loudspeakers, equally divided
between the up- and downstream side of the rig, were used as acoustic sources, as shown in Figs. 8 and 9. The
test rig is terminated at each end by a dissipative silencer and a horn to reduce the effects of standing waves.
D.A. system 

Loud speaker set A Loud speaker set B Test object 

Mic. 1 Mic. 3 Mic. 6Mic. 4Muffler Muffler

M

Fig. 8. Layout of the MWL/KTH test rig for determination of acoustic two-port data.
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Fig. 9. Photo of the CAC mounted in the MWL/KTH test rig for determination of acoustic two-port data.
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Fig. 10. Measured transmission loss for the complete CAC in the downstream direction: —, M ¼ 0.0; - - - -, M ¼ 0.025; � � � � , M ¼ 0.05;

- � - � , M ¼ 0.075; 3 3 3 3, M ¼ 0.01.
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Fluctuating pressures were measured by using six condenser microphones (Brüel & Kjaer 1/4-inch 4938) flush
mounted in the wall of the steel pipes. All measurements were performed using random noise excitation.
The fluctuating pressures were transformed to the frequency domain with a resolution of 5Hz and 4000
averages. The two-port matrix for the test object was obtained using the source switching technique as
described in Ref. [42]. From the measured two-port data the transmission loss for the CAC was calculated
using the expression [23]

TL ¼ 10 log
1þMIN

1þMOUT

� �2
ZOUT

4ZIN
T11 þ

T12

ZOUT
þ ZINT21 þ

ZINT22

ZOUT

����
����2

( )
(103)

and thereafter compared to the transmission loss predicted from theory. The Mach numbers and the acoustic
wave impedances in the in- and outlet of the CAC are denoted MIN, MOUT, ZIN and ZOUT in Eq. (103). To
minimize the effects of flow noise at the microphones, source correlation using the loudspeaker voltage signal
was performed.

The transmission loss obtained from measurements in the direction of flow is shown in Fig. 10. The effect of
the mean flow appears to be small at higher frequencies with differences of less than 1 dB. As expected, an
increased flow speed will result in decreased damping. An interesting feature is the substantial amount of low
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Fig. 11. Measured transmission loss for the complete CAC in the upstream direction: —, M ¼ 0.0; - - - -, M ¼ 0.025; � � � � , M ¼ 0.05;

- � - � , M ¼ 0.075; 3 3 3 3, M ¼ 0.01.
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frequency damping that clearly increases with increasing Mach number. As will be seen in the simulation
results, this effect can be explained by Howe’s theory as transfer of acoustic energy to the turbulent field due to
acoustic boundary layers that are thicker than the viscothermal sub-layers. If the engine breathing noise is
considered as the source the transmission loss in the upstream direction is more interesting since the CAC is
located on the intake side of the engine. The upstream transfer matrix (Tup) can easily be obtained simply by
inversion of the downstream transfer matrix (Tdown). In order to correctly establish the directions for the
velocities, the signs of the elements at the positions (1, 2) and (2, 1) have to be reversed as

Tup ¼
1

Tdown;11Tdown;22 � Tdown;12Tdown;21

Tdown;22 Tdown;12

Tdown;21 Tdown;11

" #
. (104)

Finally, the transmission loss in the upstream direction can be calculated using Eq. (103). The resulting
transmission loss is shown in Fig. 11. The effect of the mean flow is more pronounced than in the downstream
direction especially at higher frequencies where increasing flow speed corresponds to increasing damping.
At low frequencies the damping due to sound-turbulence interaction is about 1 dB larger than in the
downstream direction. It is interesting to detect this relatively large amount of turbulent damping for this
charge air cooler compared to catalytic converters and particular filters where no effect of turbulence is
present.
5. Model validation at cold conditions

5.1. The case without mean flow

5.1.1. Cooling tubes

The effect of using different cross-sectional shapes with identical hydraulic diameter to model the cooling
tubes is first studied for the case without flow. Two models are used for this purpose: one 1D axi-symmetric
circular model and one 2D model with the shape of an isosceles trapezium—in this particular case very similar
to a triangle. The 2D mesh, which is shown in Fig. 12, is symmetric in one direction and is therefore
represented by half the geometry. The axi-symmetric mesh, which is biased towards the duct wall in order to
resolve the large gradients in the boundary layers, consists of 19 elements and 39 nodes. Corresponding figures
for the 2D trapezium geometry are 270 elements and 1155 nodes. The calculated attenuation and phase speed
ratio for the two models are shown in Figs. 13 and 14. Here, the attenuation and phase speed ratio of a wave
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Fig. 12. 2D finite element mesh used to describe the two-ports for the cooling tubes.
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Fig. 13. Predicted attenuation for one cooling tube: —, Zwikker & Kosten; JJJJ, 2D FE: circular geometry; DDDD, 2D FE: trapezium

geometry.
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Fig. 14. Predicted phase speed ratio for one cooling tube: —, Zwikker & Kosten; JJJJ, 2D FE: circular geometry; DDDD, 2D FE:

trapezium geometry.
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are defined as

attenuation ¼ 8:686jImðk0GÞj ðdB=mÞ (105)

and

c=c0 ¼ j1=ReðGÞj. (106)

The difference between the Zwikker and Kosten solution and the one obtained from using the 1D FE solution
for a circular cross-section is less than 0.01 dBm�1, which indicates that the element discretization has
converged. In Fig. 13 it can also be noticed that the difference between the circular solution and the trapezium
solution is very small and decreases with increasing frequency. There is less than 0.1 dBm�1 more damping for
the trapezium solution. The trend is similar for the phase speed ratio (see Fig. 14).

If the hydraulic diameter is used to calculate the shear wavenumber, the lower frequency limit at 50Hz will
correspond to a shear wavenumber of s ¼ 6 whereas the upper frequency limit at 1600Hz corresponds to
s ¼ 35. The ‘‘reduced frequency’’ for the frequency extremes are k0a ¼ 0.0012 and 0.040, respectively. The
requirements that k0a51 and k0a/s51 are thereby fulfilled and the Zwikker and Kosten approximations are
valid [13]. The lower shear wavenumber is definitely in the same range as the catalytic converters that were
studied in Refs. [14,15]. The upper limit, however, far exceeds the shear wavenumber of 10 that was the largest
reported. This indicates that the wide duct approximation by Kirchhoff might also be a good choice to
simplify the calculations. The axial velocity profile, which was observed in Ref. [13] to consist of an almost flat
core and small peaks close to the tube wall, is also present for the trapezium geometry (see Fig. 15), which
emphasizes the need of a biased mesh with fine resolution close to the walls.
5.1.2. Complete charge air cooler

The complete charge air cooler is modelled using two approaches: completely based on two-ports using the
SIDLAB software [43] or based on the multi-port approach to represent the tanks together with two-ports for
the cooling tubes as was described in Section 3. In order to study the sensitivity to the amount of damping in
the 3D FE-models used to obtain the multi-ports, two different values on the speed of sound are used: c ¼ c0
and c ¼ c0(1+i/100) where c0 is the isentropic speed of sound and i is the imaginary number. This artificial
damping will compensate the FE-results for the viscothermal losses occurring at the boundaries, damping in
the plastic walls and radiation. The chosen damping value is based on measurements and modelling done on
similar plastic components in Ref. [35], see also Section 3.2.1.



ARTICLE IN PRESS

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

Frequency (Hz)

Tr
an

sm
is

si
on

 L
os

s 
(d

B
)

Fig. 16. Transmission loss for complete CAC at M ¼ 0: —, measured; - - - -, predicted using multi-port technique and 2D FE trapezium

geometry (speed of sound c ¼ c0(1+i/100) in 3D FE-model); � � � � , predicted using multi-port technique and 2D FE trapezium geometry

(speed of sound c ¼ c0 in 3D FE-model); - � - � , predicted using two-port technique and 2D FE trapezium geometry.

Fig. 15. Predicted normalized acoustic velocity mode shapes for (a) 50Hz; (b) 500Hz and (c) 1000Hz.
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In Fig. 16 the transmission loss from these three predictions is shown together with the experimentally
obtained curve. It can be observed that the two-port approach provides good results with deviations less than
1 dB up to 1200Hz where cross-modes in the inlet/outlet tanks start to propagate and the response is shifted.
The accuracy of the results provided from the multi-port approach with complex speed of sound is very good.
The deviation stays within less than 0.5 dB up to 1400Hz, indeed an impressive result. Above 1400Hz the
deviation is between 0.5 and 1 dB which still is a good result. The predictions made without losses in the tanks,
are not as good with deviations increasing with increasing frequency. In the following calculations, for the case
of superimposed flow, the speed of sound c ¼ c0(1+i/100) is used in the 3D FE-model used to extract the
multi-ports.
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5.2. The case with mean flow

5.2.1. Cooling tubes

The study of the dependence on using circular or trapezium shape to model the cooling tubes is extended
here to include a small mean flow. The effect of approximating the profile of the mean flow as constant
compared to a laminar profile is also studied. For this purpose the model by Dokumaci [14] and the modified
2D FE approach [16] is used. The flow speed in the tubes was taken as M ¼ 0.08 which corresponds to
M ¼ 0.1 in the measurement ducts (diameter 0.066m). If the hydraulic diameter is used the Reynolds number
becomes Re ¼ 5000, which for a circular cross-section indicates that the flow is not laminar but rather
turbulent or in the transition zone. For triangular sections, as was discussed in Section 2, transition occurs
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Fig. 17. Predicted attenuation in the upstream direction for one cooling tube at M ¼ 0.08: —, Zwikker & Kosten (M ¼ 0); ,

Dokumaci (flat mean flow profile); DDDD, 2D FE: trapezium geometry (flat mean flow profile); JJJJ, 2D FE: circular geometry

(laminar mean flow profile); DDDD, 2D FE: trapezium geometry (laminar mean flow profile), - - - - Howe.
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Fig. 18. Predicted phase speed ratio in the upstream direction for one cooling tube at M ¼ 0.08: —, Zwikker & Kosten (M ¼ 0); ,

Dokumaci (flat mean flow profile); DDDD, 2D FE: trapezium geometry (flat mean flow profile); JJJJ, 2D FE: circular geometry

(laminar mean flow profile); DDDD, 2D FE: trapezium geometry (laminar mean flow profile), - - - - Howe.
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Fig. 19. Predicted attenuation in the downstream direction for one cooling tube at M ¼ 0.08: —, Zwikker & Kosten (M ¼ 0); ,

Dokumaci (flat mean flow profile); DDDD, 2D FE: trapezium geometry (flat mean flow profile); JJJJ, 2D FE: circular geometry

(laminar mean flow profile); DDDD, 2D FE: trapezium geometry (laminar mean flow profile), - - - - Howe.
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Fig. 20. Predicted phase speed ratio in the downstream direction for one cooling tube at M ¼ 0.08: —, Zwikker & Kosten (M ¼ 0);

, Dokumaci (flat mean flow profile); DDDD, 2D FE: trapezium geometry (flat mean flow profile); JJJJ, 2D FE: circular

geometry (laminar mean flow profile); DDDD, 2D FE: trapezium geometry (laminar mean flow profile), - - - - Howe.
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gradually over the cross-section when the Reynolds number is increased. It is therefore not possible to state
whether the flow is laminar or turbulent in the entire cross-section for this flow speed. In order to find out if
the low frequency damping that was observed in the experiments for this flow speed is related to interaction
between the acoustic boundary layers and the turbulence, the model by Howe is used. To the authors’
knowledge, no data has been published using this model for Reynolds numbers below Re ¼ 10 000. The model
requires that the mean flow profile is flat which might not be the case for the less turbulent flow in this
particular case.

Figs. 17 and 18 show the attenuation and phase speed ratio in the direction opposite to the mean flow for
the predictions. The difference between using the trapezium geometry and the circular one is very small for
both the case of constant and laminar flow profile. The difference relative to the laminar flow solution is in the
order of 1% and decreases with increasing frequency. Moreover, it is interesting that the plug flow profile
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solution underestimates the damping compared to the corresponding laminar flow profile solution. The
difference, which is of the order of 6% relative to the laminar flow solution, increases with increasing
frequency. Concerning the phase speed ratio the relative differences are even smaller and are all decreasing
with increasing frequency. Identical observations can also be made for waves propagating with the mean flow,
see Figs. 19 and 20. However, here the damping is less than for the case without flow and the laminar flow
profile solution gives even less damping than the plug flow solution.

The effect of excluding the fluctuating part of the dissipation function is not included in the figures as it is
extremely small for this particular case. For the circular cross-section, where the laminar flow profile can be
obtained from the Hagen-Poiseuille solution, the relative error from neglecting the dissipation term is less than
0.5% at a Stokes number of 6 (50Hz) and decreases with increasing frequency. For very low frequencies the
effect can be significant as the error increases steeply with decreasing frequency, however, in the frequency
range of interest in the present investigation the simplification is justified.

The solution obtained using the model by Howe captures the effect of low frequency damping in both
directions as expected. However, the high frequency behaviour is based on the truncated ‘‘wide’’ Kirchhoff
solution in Ref. [13] and therefore results in less damping than the Zwikker &; Kosten solution in the low flow
limit.

5.2.2. Complete charge air cooler

For the case of a complete CAC and a present mean flow the multi-port approach is used to represent the
tanks together with two-ports for the cooling tubes. To represent the cooling tubes it was decided to use the
two-ports obtained in the previous section from the 2D FE model (trapezium geometry) with laminar mean
flow profile and the model by Howe (M ¼ 0.08). The models assuming a flat mean flow profile will produce
results somewhere in between these two. The profile of the actual mean flow is not known, as was discussed in
Section 2.1, and will also change along the axial direction since the zone of unestablished flow might be of
significant length.

The coupling elements for cross-sectional area discontinuities that were described in Section 3.3 are used
with an open area ratio of 0.61 for the vena contracta appearing at the inlet to the cooling tubes. This
approximate value can probably be improved but will most likely be larger, which is why this estimate is
conservative [41]. The effect on the assembled CAC is, however, very small. The predicted and measured
transmission loss for sound propagating through the CAC in the upstream direction is shown in Fig. 21. The
high frequency estimate from using 2D FE shows very good agreement with the experimentally obtained
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Fig. 21. Transmission loss in the upstream direction for complete CAC at M ¼ 0.1 in main duct (M ¼ 0.08 in cooling tubes): —,

measured; - - - -, predicted using multi-port technique and 2D FE (trapezium geometry) with laminar mean flow profile; - � - � , predicted

using multi-port technique and Howe’s model.
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Fig. 22. Transmission loss in the downstream direction for complete CAC at M ¼ 0.1 in main duct (M ¼ 0.08 in cooling tubes): —,

measured; - - - -, predicted using multi-port technique and 2D FE (trapezium geometry) with laminar mean flow profile; - � - � , predicted

using multi-port technique and Howe’s model.
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except in the frequency band between 700 and 1000Hz where some minor discrepancies can be observed.
Possible explanations for those deviations might be the effect of neglecting the dissipation that is included in
the original derivation in Ref. [16], from neglecting the matching of the near fields when coupling the two-
ports to the tanks or from neglecting the in-plane velocity components that was shown in Ref. [19] to yield
increasing effects when the shear wavenumber is increased.

Although the model by Howe does not yield as good predictions as the 2D FE solution in the high
frequency band, where the deviation is about 1 dB, it gives the best estimates in the low frequency band up to
300Hz. The model does still give an under-prediction of the measurement data but the effect of extra
damping, due to the interaction between the turbulence and the sound field, is captured, which cannot be
achieved by the 2D FE solution.

Similar observations can be made for the case where the two-port is in the same direction as the mean flow
(see Fig. 22). The predicted attenuation is smaller than that obtained experimentally. The deviation in the high
frequency domain is slightly larger for the 2D FE solution than in the upstream direction but stays within 1 dB
while the model by Howe shows the same accuracy as before. The low frequency prediction is, however,
slightly worsened and gives an underestimate of approximately 2 dB. For low frequencies when the wave
length is much smaller than the length scale of the CAC, the transmission will be defined by the pressure drop.
The transmission loss should therefore be independent of the direction of the two-port, which is almost the
case in the measurements. Why the results from using Howe’s model do not show this behaviour is not
completely understood. One possible explanation could be that Howe’s model assumes that the sub-layers are
thin which might not be the case for the Reynolds number appearing in this study.
6. Predicted damping for a CAC at operating conditions

To investigate the acoustical properties for a CAC at operating conditions the gas properties are updated to
correspond to values taken upstream and downstream of a CAC mounted on an operating engine. This engine
is a five cylinder diesel engine and the values in Table 1 were taken in an engine test bench at an engine
revolution speed of 4200 rev/min where the mass flow was 663 kg h�1.

The density is calculated using the law of ideal gases, the dynamic viscosity, the thermal conductivity and
the specific heat capacity at constant pressure are only dependent on the temperature at these low pressures
and can be taken from standard books [44]. The isentropic speed of sound is calculated as c0 ¼

ffiffiffiffiffiffiffiffiffiffi
gRT
p

.
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Fig. 23. Transmission loss in the upstream direction versus frequency for CAC mounted on engine operating at 4200 rev/min: —,

predicted using multi-port technique and Dokumaci’s model [14]; - - - - predicted using multi-port technique and Howe’s model [26],

� � � � predicted using multi-port technique and 2D FE with circular geometry and laminar mean flow.
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Fig. 24. Transmission loss in the downstream direction versus frequency for CAC mounted on engine operating at 4200 rev/min: —,

predicted using multi-port technique and Dokumaci’s model [14]; - - - - Predicted using multi-port technique and Howe’s model [26],

� � � � predicted using multi-port technique and 2D FE with circular geometry and laminar mean flow.

Table 1

Gas data at operating conditions for five cylinder diesel engine

Upstream CAC Downstream CAC

Temperature (K) 443 340

Static pressure (kPa) 253 244

Reynolds number (—) 4900 5900

Mach number (—) 0.052 0.047

Speed of sound (m s�1) 442 370

Density (kgm�3) 1.99 2.50

Dynamic viscosity � 105 (Pa s) 2.44 2.01
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Three different solutions are used to extract the two-ports that are used together with the multi-port
approach. The geometry is approximated as circular and the shape of the incompressible mean flow profile is
regarded as flat or laminar. Laminar as well as turbulent flow are considered. The temperature and pressure
gradient can be treated by dividing the cooling tubes into several two-ports based on different gas properties
coupled in cascade as was shown in Refs. [27,38]. The convergence is, however very fast and the difference
between using one two-port and ten results in differences less than 0.1 dB. The predicted transmission loss in
the upstream direction for the complete CAC at operating conditions is shown in Fig. 23. The gas properties in
the tanks are based on the up- and downstream values from Table 1 and the two-ports representing the
cooling tubes are calculated using the average values.

The difference between the three solutions is very small and stays within 0.5 dB except in the low frequency
region where the model by Howe yields about 2 more dB as expected. The transmission loss is generally
smaller than for the cold case and the distance between the peaks are larger due to the larger speed of sound at
higher temperatures. The low frequency damping is just between 2 and 3 dB which is smaller than the 4–5 dB
that was predicted at cold conditions. Bearing in mind the difference between predictions and measurements at
cold conditions, there is probably one extra dB not predicted that can be added for the hot case as well,
thus resulting in 3–4 dB. Concerning transmission loss in the direction of flow, the conclusions are similar
(see Fig. 24). The difference between the two directions is less than 1 dB in the range between 50 and 1600Hz.

7. Summary and conclusions

Sound transmission through charge air coolers has been studied. The frequency range under consideration
was low and medium where non-plane waves exist in the inlet/outlet tanks. A new hybrid methodology for
calculation of the global acoustic two-port for an automotive intake/exhaust device consisting of volumes with
multiple openings coupled to narrow channels has been proposed. An attractive formalism for extraction of
multi-ports from numerical 3D finite elements has been derived and presented. The two-ports for the narrow
channels include a complete treatment of the losses due to viscous and thermal boundary layers for cases
without flow as well as with a superimposed mean flow. The 2D finite element scheme derived by Astley and
Cummings [16] and the model by Dokumaci [14] have been used to study the effect of using an isosceles
trapezium or a circular cross-section with equivalent hydraulic diameter for the narrow channels. The effect of
the shape of the cross-section has been found to be small, but increases with increasing mean flow. Flat profiles
as well as laminar flow profiles have been used for the superimposed incompressible mean flow and the
difference between these has been shown to be of larger importance than the shape of the cross-section.

The hybrid methodology has been applied as the first complete model for charge air coolers. The model has
been validated to experimentally obtained transmission loss data at room temperature for a charge air cooler
designed for use on a passenger car with very good accuracy. For the case of a superimposed mean flow, a
considerable amount of low frequency damping due to turbulence has been observed. The model for
interaction between sound waves and turbulence proposed by Howe [26] has for the first time been applied to
extract two-ports. The use of these two-ports within the hybrid model describes the low frequency attenuation
with reasonable accuracy but gives slightly less accurate predictions at higher frequencies.

The proposed models have been used to predict the sound transmission through the charge air cooler at
operating conditions. Mass flow, temperature and pressure data for the enclosed air, taken at positions
upstream and downstream of a CAC mounted on an engine in test bench, was used to calculate the required
gas properties. The predicted transmission loss at operating conditions is smaller than those obtained at cold
conditions without pressure and temperature gradients. The amount of damping is, however, still significant at
all frequencies which gives previously underestimated opportunities to control the final noise spectra of
turbocharged engines.
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